\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Navier-Stokes equations} \hypertarget{content}{}\section*{{Content}}\label{content} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{derivation}{Derivation}\dotfill \pageref*{derivation} \linebreak \noindent\hyperlink{navierstokes_equations_via_stochastic_differential_equations}{Navier-Stokes Equations via Stochastic Differential Equations}\dotfill \pageref*{navierstokes_equations_via_stochastic_differential_equations} \linebreak \noindent\hyperlink{navierstokes_equations_and_einstein_field_equations}{Navier-Stokes Equations and Einstein Field Equations}\dotfill \pageref*{navierstokes_equations_and_einstein_field_equations} \linebreak \noindent\hyperlink{turbulence}{Turbulence}\dotfill \pageref*{turbulence} \linebreak \noindent\hyperlink{numerical_simulation}{Numerical Simulation}\dotfill \pageref*{numerical_simulation} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{exact_solutions}{Exact Solutions}\dotfill \pageref*{exact_solutions} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{Navier–Stokes equations} describe the motion of fluids: gases and liquids. These equations arise from applying Newton's second law to fluid motion, together with the assumption that the fluid feels forces due to pressure, viscosity and perhaps an external force. The Navier-Stokes equations are used to model the weather, ocean currents, water flow in a pipe, air flow around a wing, and even the motion of stars inside a galaxy. In their full generality, the Navier-Stokes equations are: \begin{displaymath} \rho \left(\frac{\partial v}{\partial t} + v \cdot \nabla v \right) = -\nabla p + \nabla \cdot T + F \end{displaymath} Here $\rho$ is the density of the fluid, $v$ is its velocity vector field, $p$ is the pressure, $T$ is the stress tensor, and $F$ is a specified external force (again a vector field). To solve these equations, we must supplement them by a formula for the pressure $p$, a formula for the stress tensor $T$, a formula for the force $F$, and an equation expressing the conservation of mass: \begin{displaymath} \frac {\partial v}{\partial t} + \nabla \left(\rho v\right) = 0 \end{displaymath} \hypertarget{details}{}\subsection*{{Details}}\label{details} \hypertarget{derivation}{}\subsubsection*{{Derivation}}\label{derivation} The Navier-Stokes equations are often presented for `Newtonian' fluids, where the stress tensor $T$ is related to the velocity $v$ in a simple linear way. The Navier-Stokes equations for a Newtonian fluid are: \begin{displaymath} \rho \left(\frac{\partial v}{\partial t} + v \cdot \nabla v \right) = -\nabla p + \mu \nabla^2 v + F \end{displaymath} Here $\rho$ is the density of the fluid, $v$ is its velocity vector field, $p$ is the pressure, $\mu$ is a constant called the [[viscosity]], and $F$ is a specified external force (again a vector field). To understand where these equations come from, let us first consider the left-hand side. This describes the rate of change of momentum per unit volume of a little `piece' of the fluid. The reason is that the left-hand side above equals the density times \begin{displaymath} \frac{\partial v}{\partial t} + v \cdot \nabla v , \end{displaymath} which is the \emph{acceleration} of a little piece of fluid. This acceleration involves the rate of change of velocity as you just sit in one place, namely $\frac{\partial v}{\partial t}$, but also the rate of change of velocity caused by the fluid moving to a new place where the velocity is different, namely $v \cdot \nabla v$. The sum \begin{displaymath} \frac{\partial v}{\partial t} + v \cdot \nabla v \end{displaymath} is called the \textbf{[[convective derivative]]} of the velocity vector field, also known as the \textbf{convective acceleration}. In short, the left-hand side of the Navier-Stokes equations is a close relative of $m a$ from Newton's law. Simiarly, the right-hand side is a close relative of $F$. It's the force per unit volume on a little piece of fluid: \begin{displaymath} -\nabla p + \mu \nabla^2 v + F \end{displaymath} Here $p$ is the pressure, so $-\nabla p$, minus the gradient of the pressure, is the force per unit volume due to pressure. Similarly $\mu$ is the viscosity, and $\mu \nabla^2 v$ is the force per unit volume due to viscosity. Finally, $F$ is any \emph{additional} force per unit volume that we might be imposing on the liquid. The viscosity term $\mu \nabla^2 v$ takes a little work to understand. For example, if a little piece of fluid is moving slower in the $x$ direction than the average of its neighbors, the $x$ component of $\mu \nabla^2 v$ will be positive, meaning that its neighbors will be pushing on it, trying to make it go \emph{faster} in that direction! We define a \textbf{Newtonian fluid} to be one obeying this simple linear formula for the force per unit volume due to viscosity. (Blood is a notably \emph{non}-Newtonian fluid, because red blood cells push up against their neighbors in a much more complicated way.) \hypertarget{navierstokes_equations_via_stochastic_differential_equations}{}\subsubsection*{{Navier-Stokes Equations via Stochastic Differential Equations}}\label{navierstokes_equations_via_stochastic_differential_equations} It is possible to state [[stochastic differential equations]] such that the expectation value of the solution process is a solution to the Navier-Stokes equations. This seems to be a fairly recent result of Peter Constantin and Gautam Iyer: \begin{itemize}% \item Peter Constantin, Gautam Iyer: \emph{A stochastic Lagrangian representation of the 3-dimensional incompressible Navier-Stokes equations} (\href{http://arxiv.org/abs/math/0511067}{arXiv}), \emph{A stochastic-Lagrangian approach to the Navier-Stokes equations in domains with boundary} (\href{http://arxiv.org/abs/1003.2461}{arXiv}). \end{itemize} \hypertarget{navierstokes_equations_and_einstein_field_equations}{}\subsubsection*{{Navier-Stokes Equations and Einstein Field Equations}}\label{navierstokes_equations_and_einstein_field_equations} Recently there has been published the claim that there is a close connection of the incompressible Navier-Stokes equations and the Einstein field equations for the vacuum of general relativity, see \begin{itemize}% \item Irene Bredberg, Cynthia Keeler, Vyacheslav Lysov, Andrew Strominger: \emph{From Navier-Stokes To Einstein} \href{http://arxiv.org/abs/1101.2451}{arXiv} \end{itemize} \hypertarget{turbulence}{}\subsubsection*{{Turbulence}}\label{turbulence} One of the most mysterious and striking features of solutions of the Navier-Stokes equations is [[turbulence]]. \hypertarget{numerical_simulation}{}\subsubsection*{{Numerical Simulation}}\label{numerical_simulation} Two common approaches for the numerical simulation of the Navier-Stokes equations used in [[meteorology]] and for [[climate models]] are [[finite element methods]] and [[spectral methods]]. One other interesting method is the [[Lattice Boltzmann method]], mainly due to its simplicity. \hypertarget{references}{}\subsection*{{References}}\label{references} There are also a lot of references on the page [[turbulence]]. \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item \href{http://en.wikipedia.org/wiki/Navier-Stokes}{Navier-Stokes}, Wikipedia. \end{itemize} \hypertarget{exact_solutions}{}\subsubsection*{{Exact Solutions}}\label{exact_solutions} The following book provides a list of exact solutions: \begin{itemize}% \item Philip G. Drazin, Norman Riley: \emph{The Navier-Stokes equations. A classification of flows and exact solutions.} (\href{http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1154.76019&format=complete}{ZMATH}) \end{itemize} category:mathematical methods [[!redirects Navier-Stokes]] \end{document}