Showing changes from revision #4 to #5:
Added | Removed | Changed
Spectral methods are methods for the numerical approximation of partial differential equations. They are important for the solution of the Navier-Stokes equations in meteorology and in climate models.
The basic idea of spectral methods is to choose a finite set of functions and calculate the optimal approximation of the exact solution by these functions. These basis functions are often part of an orthonormal basis of a Hilbert space, and more specifically trigonometric functions, hence the name “spectral” methods.
The following paragraph is meant as an introduction to the method for pure mathematicians with a background in functional analysis.
For illustrative purposes we will make some simplifying assumptions. Let’s assume that we have an infinite topological vector space T, its topological dual and a (closable densely defined differential) operator
with a unique solution of the equation
We omit initial and boundary conditions for the moment. In order to calculate an approximation to the exact solution , we need to turn the infinite dimensional problem to a finite dimensional one.
The basic idea of spectral methods is to choose a finite dimensional subspace of T spanned by a given set of functions , which are called in this context trial, expansion or approximation functions. We are looking for the projection of the exact solution to the subspace , but since we don’t know , we cannot calculate the exact expansion
But we can test the goodness of a given approximation by testing for “smallness”.
The “smallness” test in spectral methods is done via a choice of a finite dimensional subspace of the dual space spanned by the elements , we then demand that
should hold for all . The “functions” are called test or weight functions. Due to the choice of finite dimensional subspaces the problem is reduced to a finite set of (linear) algebraic equations.
Spectral methods, Wikipedia
Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, Thomas A. Zang: Spectral methods. Fundamentals in single domains. (Springer 2006, ZMATH)
Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, Thomas A. Zang: Spectral methods. Evolution to complex geometries and applications to fluid dynamics. (Springer 2007, ZMATH)
David A. Kopriva: Implementing spectral methods for partial differential equations. Algorithms for scientists and engineers. (Springer 2009, ZMATH)