The Azimuth Project
Analytical hydrodynamics (Rev #1, changes)

Showing changes from revision #0 to #1: Added | Removed | Changed



Analytical hydrodynamics, as it is understood here, means the investigation of fluid flows using tools from topology and differential geometry. These tools enable us to describe properties and conservation laws of fluid flows that may be important for computational fluid dynamics, especially for climate models. Climate models need to solve the Navier-Stokes equations for the atmosphere and the oceans, they need to use discrete approximation schemes for this task. Such schemes can cause artefacts like the violation of conservation laws of the partial differential equations that they approximate. This phenomenon poses a huge problem for long running models like climate models.

A climate model that violates the conservation of energy, for example, cannot be used to predict an average temperature (or, quite possible, to predict anything about the climate at all). Some currently used climate model suffer from these insufficiencies. Necessary corrections have to be added manually and heuristically and are commonly called “flow corrections”. It is a part of ongoing research to remove these kinds of corrections from climate models.


The flow of an ideal fluid, that is an incompressible, inviscid and homogenuous fluid, filling a certain domain, is from the mathematical viewpoint described by a geodesic on the group of diffeomorphisms of that domain that preserve volume elements. The geodesics are the geodesics of the Riemannian metric given by the kinetic energy.

We’ll make all of this precise in the following:

As domain we take a compact Riemannian manifold MM. The diffeomorphisms of MM form an infinite dimensional group D(M)D(M). D(M)D(M) is a Fréchet manifold, so that some concepts from finite dimensional differential geometry may be defined on it.

To be continued…


  • V.I. Arnold, ; B.A. Khesin: Topological methods in hydrodynamics. (Springer 1998, ZMATH)

  • Boris Khesin, Robert Wendt: The geometry of infinite-dimensional groups. (Springer 2009, ZMATH)

A paper dedicated to the Burgers equation:

  • Boris Khesin, Gerard Misiolek: Shock waves for the Burgers equation and curvatures of diffeomorphism groups (arXiv)