We’re going to have a seminar on applied category theory here at U. C. Riverside, starting in January 2019. We will make it easy to have discussions on the Azimuth Forum and Azimuth Blog. These will work best if you read the papers we’re talking about and then join these discussions. We will also try to videotape the talks, to make it easier for you to follow along.
Here’s how the schedule of talks is shaping up so far. If you have questions or comments please make a comment here!
Abstract. The global warming crisis is part of a bigger transformation in which humanity realizes that the Earth is a finite system and that our population, energy usage, and the like cannot continue to grow exponentially. If civilization survives this transformation, it will affect mathematics - and be affected by it - just as dramatically as the agricultural revolution or industrial revolution. We should get ready!
Also try these slides and videos from related talks:
Jonathan Lorand is visiting U. C. Riverside to work with our group on applications of symplectic geometry to chemistry.
Abstract. In this talk we will look at various examples of classification problems in symplectic linear algebra: conjugacy classes in the symplectic group and its Lie algebra, linear lagrangian relations up to conjugation, tuples of (co)isotropic subspaces. I will explain how many such problems can be encoded using the theory of symplectic poset representations, and will discuss some general results of this theory. Finally, I will recast this discussion from a broader category-theoretic perspective.
Christina Vasilakopoulou will give a talk on open systems as algebras for the operad (or more precisely, symmetric monoidal category) of wiring diagrams. It will be based on this paper:
but she will focus more on the algebraic description (and conditions for deterministic/total systems) rather than the sheaf theoretic aspect of the input types. This work builds on earlier papers such as these:
David I. Spivak, The operad of wiring diagrams: formalizing a graphical language for databases, recursion, and plug-and-play circuits.
Dmitry Vagner, David I. Spivak and Eugene Lerman, Algebras of open dynamical systems on the operad of wiring diagrams.
Abstract. We will start by describing the monoidal category of labeled boxes and wiring diagrams and its induced operad. Various kinds of systems such as discrete and continuous dynamical systems have been expressed as algebras for that operad, namely lax monoidal functors into the category of categories. A major advantage of this approach is that systems can be composed to form a system of the same kind, completely determined by the specific way the composite systems are interconnected (`wired' together). We will then introduce a generalized system, called machine, again as a wiring diagram algebra. On the one hand, this abstracted concept accomplishes to be all-inclusive in the sense that discrete and continuous dynamical systems are sub-algebras; on the other hand, we can specify succinct categorical conditions for totality and/or determinism of systems that also adhere to the algebraic description.
Cicala will discuss a topic from this paper:
His leading choice is a model for social contagion (e.g. opinions) which is discussed in more detail here:
Abstract. Fong, Spivak and Tuyéras have found a categorical framework in which gradient descent algorithms can be constructed in a compositional way. To explain this, we first give a brief introduction to backprogation and gradient descent. We then describe their monoidal category $Learn$, where the morphisms are given by abstract learning algorithms. Finally, we show how gradient descent can be realized as a monoidal functor from $Para$, the category of Euclidean spaces with differentiable parameterized functions between them, to $Learn$.
Her talk will be based on this paper: